Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445951

ABSTRACT

The hepatic matrisome is involved in the remodeling phase of liver regeneration. As the gut microbiota has been implicated in liver regeneration, we investigated its role in liver regeneration focusing on gene expression of the hepatic matrisome after partial hepatectomy (PHx) in germ-free (GF) mice, and in GF mice reconstituted with normal gut microbiota (XGF). Liver mass restoration, hepatocyte proliferation, and immune response were assessed following 70% PHx. Hepatic matrisome and collagen gene expression were also analyzed. Reduced liver weight/body weight ratio, mitotic count, and hepatocyte proliferative index at 72 h post PHx in GF mice were preceded by reduced expression of cytokine receptor genes Tnfrsf1a and Il6ra, and Hgf gene at 3 h post PHx. In XGF mice, these indices were significantly higher than in GF mice, and similar to that of control mice, indicating normal liver regeneration. Differentially expressed genes (DEGs) of the matrisome were lower in GF compared to XGF mice at both 3 h and 72 h post PHx. GF mice also demonstrated lower collagen expression, with significantly lower expression of Col1a1, Col1a2, Col5a1, and Col6a2 compared to WT mice at 72 h post PHx. In conclusion, enhanced liver regeneration and matrisome expression in XGF mice suggests that interaction of the gut microbiota and matrisome may play a significant role in the regulation of hepatic remodeling during the regenerative process.


Subject(s)
Hepatectomy , Liver Regeneration , Animals , Mice , Liver Regeneration/genetics , Liver/metabolism , Gene Expression
2.
Biomedicines ; 10(8)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35892681

ABSTRACT

Angiogenesis is the formation of new blood vessels from pre-existing vessels. Adequate oxygen transport and waste removal are necessary for tissue homeostasis. Restrictions in blood supply can lead to ischaemia which can contribute to disease pathology. Vascular endothelial growth factor (VEGF) is essential in angiogenesis and myogenesis, making it an ideal candidate for angiogenic and myogenic stimulation in muscle. We established C2C12 mouse myoblast cell lines which stably express elevated levels of (i) human VEGF-A and (ii) dual human FGF4-VEGF-A. Both stably transfected cells secreted increased amounts of human VEGF-A compared to non-transfected cells, with the latter greater than the former. In vitro, conditioned media from engineered cells resulted in a significant increase in endothelial cell proliferation, migration, and tube formation. In vivo, this conditioned media produced a 1.5-fold increase in angiogenesis in the chick chorioallantoic membrane (CAM) assay. Delivery of the engineered myoblasts on Matrigel demonstrated continued biological activity by eliciting an almost 2-fold increase in angiogenic response when applied directly to the CAM assay. These studies qualify the use of genetically modified myoblasts in therapeutic angiogenesis for the treatment of muscle diseases associated with vascular defects.

3.
J Clin Med ; 10(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208708

ABSTRACT

Targeted cellular ablation is being increasingly used in the treatment of arrhythmias and structural heart disease. Catheter-based ablation for atrial fibrillation (AF) is considered a safe and effective approach for patients who are medication refractory. Electroporation (EPo) employs electrical energy to disrupt cell membranes which has a minimally thermal effect. The nanopores that arise from EPo can be temporary or permanent. Reversible electroporation is transitory in nature and cell viability is maintained, whereas irreversible electroporation causes permanent pore formation, leading to loss of cellular homeostasis and cell death. Several studies report that EPo displays a degree of specificity in terms of the lethal threshold required to induce cell death in different tissues. However, significantly more research is required to scope the profile of EPo thresholds for specific cell types within complex tissues. Irreversible electroporation (IRE) as an ablative approach appears to overcome the significant negative effects associated with thermal based techniques, particularly collateral damage to surrounding structures. With further fine-tuning of parameters and longer and larger clinical trials, EPo may lead the way of adapting a safer and efficient ablation modality for the treatment of persistent AF.

4.
Int J Mol Sci ; 23(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35008876

ABSTRACT

The chick chorioallantoic membrane (CAM) assay model of angiogenesis has been highlighted as a relatively quick, low cost and effective model for the study of pro-angiogenic and anti-angiogenic factors. The chick CAM is a highly vascularised extraembryonic membrane which functions for gas exchange, nutrient exchange and waste removal for the growing chick embryo. It is beneficial as it can function as a treatment screening tool, which bridges the gap between cell based in vitro studies and in vivo animal experimentation. In this review, we explore the benefits and drawbacks of the CAM assay to study microcirculation, by the investigation of each distinct stage of the CAM assay procedure, including cultivation techniques, treatment applications and methods of determining an angiogenic response using this assay. We detail the angiogenic effect of treatments, including drugs, metabolites, genes and cells used in conjunction with the CAM assay, while also highlighting the testing of genetically modified cells. We also present a detailed exploration of the advantages and limitations of different CAM analysis techniques, including visual assessment, histological and molecular analysis along with vascular casting methods and live blood flow observations.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Chorioallantoic Membrane/metabolism , Neovascularization, Pathologic , Neovascularization, Physiologic , Animals , Chick Embryo
5.
JHEP Rep ; 2(5): 100140, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32875282

ABSTRACT

BACKGROUND & AIMS: Liver diseases are caused by many factors, such as genetics, nutrition, and viruses. Therefore, it is important to delineate transcriptomic changes that occur in various liver diseases. METHODS: We performed high-throughput sequencing of mouse livers with diverse types of injuries, including cholestasis, diet-induced steatosis, and partial hepatectomy. Comparative analysis of liver transcriptome from mice and human samples of viral infections (HBV and HCV), alcoholic hepatitis (AH), non-alcoholic steatohepatitis (NASH), and biliary atresia revealed distinct and overlapping gene profiles associated with liver diseases. We hypothesised that discrete molecular signatures could be utilised to assess therapeutic outcomes. We focused on cholestasis to test and validate the hypothesis using pharmacological approaches. RESULTS: Here, we report significant overlap in the expression of inflammatory and proliferation-related genes across liver diseases. However, cholestatic livers were unique and displayed robust induction of genes involved in drug metabolism. Consistently, we found that constitutive androstane receptor (CAR) activation is crucial for the induction of the drug metabolic gene programme in cholestasis. When challenged, cholestatic mice were protected against zoxazolamine-induced paralysis and acetaminophen-induced hepatotoxicity. These protective effects were diminished upon inhibition of CAR activity. Further, drug metabolic genes were also induced in the livers from a subset of biliary atresia patients, but not in HBV and HCV infections, AH, or NASH. We also found a higher expression of CYP2B6, a CAR target, in the livers of biliary atresia patients, underscoring the clinical importance of our findings. CONCLUSIONS: Comparative transcriptome analysis of different liver disorders revealed specific induction of phase I and II metabolic genes in cholestasis. Our results demonstrate that CAR activation may lead to variations in drug metabolism and clinical outcomes in biliary atresia. LAY SUMMARY: Transcriptomic analysis of diverse liver diseases revealed alterations in common and distinct pathways. Specifically, in cholestasis, we found that detoxification genes and their activity are increased. Thus, cholestatic patients may have an unintended consequence on drug metabolism and not only have a beneficial effect against liver toxicity, but also may require adjustments to their therapeutic dosage.

6.
Molecules ; 25(17)2020 Aug 23.
Article in English | MEDLINE | ID: mdl-32842550

ABSTRACT

Acute liver injury (ALI) is a highly destructive and potentially life-threatening condition, exacerbated by physical and psychological stress. The endocannabinoid system plays a key role in modulating stress and hepatic function. The aim of this study was to examine the development of acute liver injury in the genetically susceptible stress-sensitive Wistar-Kyoto (WKY) rat compared with normo-stress-sensitive Sprague Dawley (SD) rats, and associated changes in the endocannabinoid system. Administration of the hepatotoxin lipopolysaccharide/D-Galactosamine (LPS/GalN) resulted in marked liver injury in WKY, but not SD rats, with increased alanine aminotransferase (ALT), aspartate aminotransferase (AST) and glutamate dehydrogenase (GLDH) plasma levels, significant histopathological changes, increased hepatic pro-inflammatory cytokine expression and caspase-3 activity and expression and reduced Glutathione (GSH) activity. Furthermore, compared to SD controls, WKY rats display increased anandamide and 2-Arachidonoylglycerol levels concurrent with decreased expression of their metabolic enzymes and a decrease in cannabinoid (CB)1 receptor expression following LPS/GalN. CB1 antagonism with AM6545 or CB2 agonism with JWH133 did not alter LPS/GalN-induced liver injury in SD or WKY rats. These findings demonstrate exacerbation of acute liver injury induced by LPS/GalN in a stress-sensitive rat strain, with effects associated with alterations in the hepatic endocannabinoid system. Further studies are required to determine if the endocannabinoid system mediates or modulates the exacerbation of liver injury in this stress-sensitive rat strain.


Subject(s)
Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/metabolism , Endocannabinoids/blood , Galactosamine/toxicity , Lipopolysaccharides/toxicity , Liver/metabolism , Acute Disease , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Caspase 3/metabolism , Chemical and Drug Induced Liver Injury/pathology , Glutamate Dehydrogenase/blood , Glutathione/metabolism , Liver/pathology , Male , Rats , Rats, Inbred WKY , Rats, Sprague-Dawley
7.
Sci Rep ; 9(1): 15964, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31685850

ABSTRACT

The dermal striated muscle panniculus carnosus (PC), prevalent in lower mammals with remnants in humans, is highly regenerative, and whose function is purported to be linked to defence and shivering thermogenesis. Given the heterogeneity of responses of different muscles to disease, we set out to characterize the PC in wild-type and muscular dystrophic mdx mice. The mouse PC contained mainly fast-twitch type IIB myofibers showing body wide distribution. The PC exemplified heterogeneity in myofiber sizes and a prevalence of central nucleated fibres (CNFs), hallmarks of regeneration, in wild-type and mdx muscles, which increased with age. PC myofibers were hypertrophic in mdx compared to wild-type mice. Sexual dimorphism was apparent with a two-fold increase in CNFs in PC from male versus female mdx mice. To evaluate myogenic potential, PC muscle progenitors were isolated from 8-week old wild-type and mdx mice, grown and differentiated for 7-days. Myogenic profiling of PC-derived myocytes suggested that male mdx satellite cells (SCs) were more myogenic than female counterparts, independent of SC density in PC muscles. Muscle regenerative differences in the PC were associated with alterations in expression of calcium handling regulatory proteins. These studies highlight unique aspects of the PC muscle and its potential as a model to study mechanisms of striated muscle regeneration in health and disease.


Subject(s)
Muscle Development , Muscle, Striated/physiology , Regeneration , Animals , Biomarkers , Calcium-Binding Proteins/metabolism , Cell Differentiation , Dermis/metabolism , Dermis/pathology , Disease Models, Animal , Female , Immunohistochemistry , Male , Mice , Mice, Inbred mdx , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle, Striated/pathology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Sex Factors , Stem Cells
8.
Exp Physiol ; 101(12): 1492-1505, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27634415

ABSTRACT

NEW FINDINGS: What is the central question of this study? The liver regenerative process is complex and involves a sequence of signalling events, but the possible involvement of structural and haemodynamic changes in vivo during this process has never been explored. What is the main finding and its importance? Normal sinusoidal blood flow and velocity are crucial for a normal regenerative response, and delays in these haemodynamic events resulted in impaired liver regeneration in lipopolysaccharide-insensitive, C3H/HeJ mice. Toll-like receptor 4 signalling is required for restoration of normal liver architecture during the liver regenerative process. Liver regeneration is delayed in mice with a defective Toll-like receptor 4 (TLR4; C3H/HeJ mice) but is normal in TLR4 knockouts (TLR4-/- ). Here, we investigated the possible involvement of structural and haemodynamic changes in vivo in the underlying mechanism. In lipopolysaccharide-sensitive (C3H/HeN and C57BL/6) and lipopolysaccharide-insensitive (C3H/HeJ and TLR4-/- ) mice, a 70% partial hepatectomy (PH) was performed under inhalational anaesthesia. At days 3 and 7 after PH, the hepatic microcirculation was interrogated using intravital microscopy. Delayed liver regeneration was confirmed in C3H/HeJ, but not in C3H/HeN, C57BL/6 (WT) or TLR4-/- mice by liver weight-to-body-weight ratio, the percentage of proliferating cell nuclear antigen (PCNA)-positive cells and mitotic index data. At day 3 after PH, sinusoidal red blood cell velocity increased by 100% in C3H/HeN mice, but by only 40% in C3H/HeJ mice. Estimated sinusoidal blood flow was significantly higher at day 7 after PH in C3H/HeN than in C3H/HeJ mice. The hepatic cord width was significantly larger in C3H/HeN than in C3H/HeJ mice at day 3 and it was significantly larger in TLR4-/- than in C57BL/6 WT mice at day 7 after PH. Hepatocyte nucleus density and functional sinusoidal density was significantly reduced at days 3 and 7 after PH in all mouse strains compared with their zero-time controls. Functional sinusoidal density was significantly lower in C3H/HeJ compared with C3H/HeN mice at day 7 after PH. The present study indicates that altered sinusoidal blood flow and velocity in C3H/HeJ mice may contribute to the observed delay in the regenerative response in these mice. In addition, restoration of normal liver architecture may be delayed in TLR4-/- mice.


Subject(s)
Hemodynamics/physiology , Liver Regeneration/physiology , Liver/blood supply , Liver/physiology , Microcirculation/physiology , Animals , Hemodynamics/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/physiology , Lipopolysaccharides/pharmacology , Liver/drug effects , Liver/metabolism , Liver Regeneration/drug effects , Mice, Inbred C3H , Mice, Inbred C57BL , Microcirculation/drug effects , Toll-Like Receptor 4/metabolism
9.
Nanomedicine ; 12(6): 1593-601, 2016 08.
Article in English | MEDLINE | ID: mdl-27015768

ABSTRACT

Reported here is the application of silver nanoparticle-based surface-enhanced Raman spectroscopy (SERS) as a label-free, non-invasive technique for detection of oral squamous cell cancer (OSCC) using saliva and desquamated oral cells. A total of 180 SERS spectra were acquired from saliva and 120 SERS spectra from oral cells collected from normal healthy individuals and from confirmed oropharyngeal cancer patients. Notable biochemical peaks in the SERS spectra were tentatively assigned to various components. Data were subjected to multivariate statistical techniques including principal component analysis, linear discriminate analysis (PCA-LDA) and logistic regression (LR) revealing a sensitivity of 89% and 68% and a diagnostic accuracy of 73% and 60% for saliva and oral cells, respectively. The results from this study demonstrate the potential of saliva and oral cell SERS combined with PCA-LDA or PCA-LR diagnostic algorithms as a promising clinical adjunct for the non-invasive detection of oral cancer.


Subject(s)
Carcinoma, Squamous Cell/diagnostic imaging , Mouth Neoplasms/diagnostic imaging , Spectrum Analysis, Raman , Humans , Multivariate Analysis , Saliva
10.
Tissue Eng Part C Methods ; 22(4): 370-81, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26830861

ABSTRACT

Immunocompromised hind limb ischemia (HLI) murine models are essential for preclinical evaluation of human cell-based therapy or biomaterial-based interventions. These models are used to generate proof of principle that the approach is effective and also regulatory preclinical data required for translation to the clinic. However, surgical variations in creation of HLI models reported in the literature introduce variability in the pathological manifestation of the model, in consequence affecting therapeutic endpoints. This study aims to compare the extent of vascular regeneration in HLI-induced immunocompromised murine models to obtain a stable and more reproducible injury model for testing. Athymic and Balb/C nude mice underwent HLI surgery with single and double ligation of femoral artery (FA). The recovery from surgery was observed over a period of 2 weeks with respect to ischemia reperfusion using laser Doppler and clinical signs of necrosis and ambulatory impairment. Double ligation of the FA results in a more severe response to ischemia in Balb/C with endogenous perfusion recovery up to 50% ± 10% compared with 75% ± 20% in athymic nude mice. Single iliac artery (IA) and FA lead to creation of mild ischemia compared with femoral artery-vein (FAV) pair ligation in Balb/C. Microcirculatory parameters indicate significantly lower capillary numbers (26 ± 3/mm(2)) and functional capillary density (203 ± 5 cm/cm(2)) in the FAV group. In this study, we demonstrate a reproducible, arterial double ligation in an immunocompromised Balb/C nude mouse model that exhibits characteristic pathological signs of ischemia with impaired endogenous recovery.


Subject(s)
Hindlimb/blood supply , Hindlimb/physiopathology , Immunocompromised Host , Ischemia/physiopathology , Microcirculation , Animals , Disease Models, Animal , Hindlimb/pathology , Humans , Ischemia/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Perfusion
11.
Microcirculation ; 16(4): 364-76, 2009 May.
Article in English | MEDLINE | ID: mdl-19308793

ABSTRACT

BACKGROUND/AIM: The mechanism by which ischemia-reperfusion (I/R)-induced derangement of the hepatic microcirculation leads to tissue injury is not fully understood. We postulated that alterations to the hepatic microcirculation, including hemodynamic derangement and increased leukocyte-endothelium interaction, play a role, and that glycyrrhizin exerts its hepatoprotective effects, in part, by reducing these microcirculatory changes. MATERIALS AND METHODS: Wistar rats were subjected to 30-60 minutes segmental hepatic ischemia, followed by 120 minutes of reperfusion. Glycyrrhizin was administered prior to ischemia. Using intravital fluorescence microscopy, the administration of fluorescein isothiocyanate-conjugated erythrocytes allowed the measurement of erythrocyte-velocity (RBC(vel)), lobular, and sinusoidal perfusion. Bleb formation was observed by electron microscopy. Blood and tissue were taken for the assessment of liver injury. RESULTS: Glycyrrhizin reduced I/R-induced liver injury (histology, liver enzymes) and reduced hepatocyte apoptosis (TUNEL, caspase-3 activity). Glycyrrhizin inhibited hepatocyte bleb formation and reversed the I/R-induced reductions in lobular perfusion and RBC(vel). Leukocyte rolling and adherence in postsinusoidal venules and neutrophil infiltration were reduced by glycyrrhizin. I/R-induced elevation in HMGB1 was prevented by glycyrrhizin. CONCLUSIONS: Early bleb formation with deranged microcirculatory flow and leukocyte-endothelium interaction would appear to contribute to I/R-induced hepatocellular injury. Glycyrrhizin exerts its hepatoprotective effect by preventing these changes, in addition to a direct cellular effect.


Subject(s)
Blood Flow Velocity/drug effects , Glycyrrhizic Acid/pharmacology , Liver Circulation/drug effects , Reperfusion Injury/prevention & control , Animals , Anti-Inflammatory Agents/pharmacology , Apoptosis , Cell Adhesion , Hemodynamics/drug effects , Leukocyte Rolling , Microcirculation , Microscopy, Video , Neutrophil Infiltration , Protective Agents/pharmacology , Rats , Rats, Wistar
12.
Hepatol Res ; 38(10): 1040-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18513334

ABSTRACT

AIM: Non-parenchymal liver cells (NPLC) play an important role in the regulation of immune responses and the inflammatory process. In this study, we hypothesized that F4/80(+)Mac-1(high+) cells were involved in the regulative feedback-modulated regulation of inflammatory responses during concanavalin A (Con A)-induced hepatitis. METHODS: Hepatitis was induced in BALB/c mice by the intravenous injection of Con A. Liver injury was assessed using serum aminotransferase and pathology. The function of NPLC was assessed by FACS analysis. Accessory cell function of adherent Con A NPLC was performed with an ovalbumin specific T-helper 1 (Th1) clone proliferation assay. The culture supernatant nitric oxide (NO) content was quantified by the Griess reaction. Inducible NO synthase (iNOS) expression was demonstrated by immunohistochemistry and Western blot analysis. RESULTS: The number of hepatic F4/80(+)Mac-1(high+)cells increased in a time-dependent manner after Con A administration, which consequently suppressed Th1 cell proliferation by a mechanism likely to involve NO. The iNOS expression of NPLC was elevated at 24 h post-Con A injection. In nude mice, F4/80(+)Mac-1(high+)cells did not increase in the Con A-treated liver; the NPLC did not suppress Th1 clone proliferation. CONCLUSION: These findings suggest that the in vivo activation of F4/80(+)Mac-1(high+)cells by Con A administration suppresses Th1 cell proliferation by increasing NO, and subsequently reducing liver injury.

13.
Microvasc Res ; 70(1-2): 102-10, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15893342

ABSTRACT

The mitochondrion has been proposed to be both a target and a perpetuator of hepatic ischemia-reperfusion (IR) injury because of its reactive oxygen species (ROS) formation. Our hypothesis is that subcellular derangement in mitochondrial function is one of the earliest steps leading to the early IR-mediated loss of hepatocellular integrity. Under chloralhydrate anesthesia (36 mg/kg BW), Sprague-Dawley rats (n=7) were subjected to 40 min of warm hepatic lobular ischemia followed by 60 min reperfusion. Rats (n=7) without hepatic IR were used as controls. The fluorochromes rhodamine 123 and bisbenzimide were administered intravenously for observation of changes in mitochondrial membrane potential and hepatocellular viability, respectively. Intravital fluorescence microscopy (IVFM) was performed prior to ischemia and at 15, 45, and 60 min after reperfusion in the experimental group and at corresponding time points in the control group. A parallel relationship between mitochondrial membrane potential and cell viability as reflected in a concomitant reduction in nuclear and cytoplasmic fluorescence intensity during IR was demonstrated (r2=0.76, P<0.05). The diminution in fluorescence intensities also correlated significantly with the elevation in plasma transaminase activities (r2>0.90, P<0.05). Our data suggested that alteration in mitochondrial membrane potential is a critical subcellular event leading to hepatocellular damage in the early phase of hepatic IR injury.


Subject(s)
Hot Temperature , Ischemia/physiopathology , Liver/blood supply , Liver/physiopathology , Mitochondria, Liver/physiology , Reperfusion Injury/physiopathology , Animals , Bisbenzimidazole/administration & dosage , Bisbenzimidazole/pharmacology , Cell Survival/drug effects , Fluorescent Dyes/administration & dosage , Fluorescent Dyes/pharmacology , Injections, Intravenous , Intracellular Membranes/drug effects , Intracellular Membranes/physiology , Ischemia/etiology , Liver/pathology , Liver Function Tests , Male , Membrane Potentials/drug effects , Random Allocation , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Rhodamine 123/administration & dosage , Rhodamine 123/pharmacology , Submitochondrial Particles/metabolism , Time Factors , Transaminases/blood
14.
J Hepatol ; 40(6): 910-6, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15158330

ABSTRACT

BACKGROUND/AIMS: Hepatic stellate cells (HSCs) are known to play a role in hepatic regeneration. We investigated hepatocyte/HSC interaction and HSC activation at various times after 70% partial hepatectomy (PHx) in the rat. METHODS: The hepatic microcirculation was studied using intravital fluorescence microscopy (IVFM). Desmin and alpha-SMA within liver tissue were detected by immunohistochemistry. In isolated parenchymal liver cells (PLCs) and HSCs, double immunostaining was used to identify activated HSC. RESULTS: Using IVFM, hepatocyte-clusters were often seen in vivo at 3 days after PHx (PHx3). Distance between HSC fell from 61.7+/-2.1 microm in controls to 36.1+/-1.4 microm (P<0.001) while the HSC/hepatocyte ratio rose (0.71+/-0.01 to 1.08+/-0.03; P<0.001). In >80% of in vivo microscopic fields in the PHx3 group, clusters of HSCs were observed especially near hepatocyte-clusters. At PHx1 and PHx3, >20% of cells in the PLC-fraction were HSCs which adhered to hepatocytes. At PHx3, in addition to desmin staining, isolated HSCs were also positive for BrdU and alpha-SMA, and formed clusters. HSCs in the HSC-fraction were only positive for desmin which indicated that adherence to hepatocytes is required for HSC activation. CONCLUSIONS: Our data suggest that HSCs are activated by adhering to hepatocytes in the early phase of liver regeneration.


Subject(s)
Hepatocytes/physiology , Liver Regeneration/physiology , Liver/cytology , Liver/physiology , Animals , Bromodeoxyuridine , Cell Communication , Cell Division , Coloring Agents , Hepatectomy/methods , Hepatocytes/cytology , Immunohistochemistry , Kinetics , Male , Rats , Rats, Inbred Lew
15.
Comp Hepatol ; 3 Suppl 1: S29, 2004 Jan 14.
Article in English | MEDLINE | ID: mdl-14960181

ABSTRACT

We investigated activation mechanisms of hepatic stellate cells (HSCs) that are known to play pivotal roles in the regeneration process after 70% partial hepatectomy (PHx). Parenchymal liver cells (PLCs) and non-parenchymal cells (NPLCs) were isolated and purified from the regenerating livers at 1, 3, 7, 14 days after PHx. Each liver cell fraction was stained by immunocytochemistry using an anti-desmin antibody as a marker for HSCs, anti-alpha-smooth muscle actin (alpha-SMA) as a marker for activated HSCs, and 5-bromo-2'-deoxyuridine (BrdU) for detection of proliferating cells. Tissue sections from regenerating livers were also analyzed by immunohistochemistry and compared with the results obtained for isolated cell fractions. One and 3 days after PHx, PLC-enriched fraction contained HSCs adhered to PLCs. The HSCs adhered to PLCs were double positive for BrdU and alpha-SMA, and formed clusters suggesting that these HSCs were activated. However, HSC-enriched fraction contained HSCs not adhered PLCs showed positive staining for anti-desmin antibody but negative for anti-alpha-SMA antibody. These results suggest that HSCs are activated by adhering to PLCs during the early phase of hepatic regeneration.

17.
Microvasc Res ; 66(1): 15-21, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12826070

ABSTRACT

The steatotic liver is characterized by deranged intrahepatic microvasculature that is believed to predispose it to ischemia-reperfusion injury. The aim of this study was to investigate the distorted hepatic hemodynamics and its impact on the redox status of the steatotic liver. Hepatic hemodynamic parameters, hepatic microcirculatory perfusion (HMP), and in vivo reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] autofluorescence, which reflects the mitochondrial redox status and tissue oxygen levels, were measured in obese (n = 7) and lean Zucker rats (n = 7). Portal venous and total hepatic blood flow per unit of liver weight were found to exhibit a 37.9% and 35.9% reduction, respectively, in the steatotic liver compared to the nonsteatotic liver of the lean group (P < 0.0001) as was HMP (obese, 96.1 +/- 18.1 PU; lean, 143.8 +/- 12.0 PU, P < 0.05) that showed a 33.2% decrease in the former. Hepatic arterial resistance, however, was 38.7% lower in the obese rat (83.1 +/- 9.1 mmHg. ml(-1). min) than in the lean rat (135.5 +/- 15.8 mmHg. ml(-1). min) (P < 0.05). NAD(P)H fluorescence intensity was significantly elevated in the steatotic liver (0.16 +/- 0.001 aU) compared with the lean one (0.14 +/- 0.007 aU) (P = 0.014). Our results suggest that, in response to a reduced portal venous blood flow, there is a significant decrease in hepatic arterial resistance that, nevertheless, cannot completely compensate for the drop in overall hepatic perfusion and oxygenation of the microvascular bed in the steatotic liver of the obese Zucker rat.


Subject(s)
Liver/blood supply , Microscopy, Fluorescence/methods , NADP/metabolism , Animals , Blood Flow Velocity , Blood Pressure , Liver/metabolism , Liver Circulation , Liver Extracts/metabolism , Male , Microcirculation , Obesity/metabolism , Oxidation-Reduction , Oxygen/metabolism , Rats , Rats, Zucker , Regional Blood Flow , Ultraviolet Rays
18.
Mol Cell Endocrinol ; 201(1-2): 143-53, 2003 Mar 28.
Article in English | MEDLINE | ID: mdl-12706302

ABSTRACT

Amounts of betaA-activin, betaC-activin, activin receptor subunits ActRIIA and ActRIIB mRNA, and betaA- and betaC-activin subunit protein immunoreactivity were investigated in male Lewis rats, either untreated or after 5 or 10 weeks of CCl(4) treatment to induce cirrhosis. Apoptosis was assessed histologically and with an in situ cell death detection kit (TUNEL). Reverse transcription and polymerase chain reaction were used to evaluate mRNA levels. Activin betaA- and betaC-subunit immunoreactivity was studied by immunohistochemistry using specific monoclonal antibodies. Hepatocellular apoptosis (P<0.001), increased betaA- and betaC-activin mRNAs (three- to fourfold; P<0.01) and increased betaA- and betaC-activin tissue immunoreactivity were evident, whereas ActRIIA mRNA concentrations fell (30%; P<0.01) after 5 weeks of CCl(4) treatment. The mRNA concentrations at 10 weeks were not significantly different from controls, despite extensive hepatic nodule formation. We conclude that the increased activin subunit expression is associated with apoptosis, rather than hepatic fibrosis and nodule formation.


Subject(s)
Activin Receptors, Type II/metabolism , Inhibin-beta Subunits/metabolism , Liver Cirrhosis, Experimental/metabolism , Activin Receptors, Type II/genetics , Animals , Apoptosis , Carbon Tetrachloride/toxicity , Disease Progression , Gene Expression , In Situ Nick-End Labeling , Inhibin-beta Subunits/genetics , Liver/metabolism , Liver/pathology , Liver Cirrhosis, Experimental/chemically induced , Liver Cirrhosis, Experimental/pathology , Male , RNA, Messenger/metabolism , Rats , Rats, Inbred Lew , Reverse Transcriptase Polymerase Chain Reaction
19.
Transplantation ; 75(6): 761-9, 2003 Mar 27.
Article in English | MEDLINE | ID: mdl-12660498

ABSTRACT

BACKGROUND: The purpose of this study was to investigate the metabolic alterations in the recipient and microcirculatory changes to the graft in the first 3 months after orthotopic liver transplantation (OLT) of nonsteatotic liver grafts from lean rats into obese Zucker rats. METHODS: Body weight and plasma lipids were measured for 3 months post-OLT. Graft perfusion (hepatic microcirculatory perfusion [HMP]) and vascular structure were measured in vivo at 3 months. Liver biopsy specimens were obtained throughout for morphologic analysis. Sham-operation obese and lean Zucker rats acted as controls. RESULTS: Plasma cholesterol levels were elevated from 2 months after OLT, whereas plasma triglyceride levels were reduced (P<0.05). Plasma high-density lipoprotein cholesterol concentrations increased from the first month after OLT (P<0.05). HMP in OLT animals (137+/-3 perfusion units [PU]) (P<0.05) was intermediate between lean (221+/-11 PU) and obese controls (113+/-5 PU). Hepatic cord width in the OLT group was similar to that in lean controls. Mean liver-to-body weight ratios in OLT animals (4.12%+/-0.39%) were significantly higher than in lean controls (3.25%+/-0.1%). The number of viable hepatocytes per high-power field in the OLT animals was lower than in the lean animals but higher than in obese controls (P<0.05). The transplanted livers showed moderate to marked microvesicular fatty change (MIFC) and glycogen deposition at 3 months after OLT. CONCLUSIONS: Transplantation of a nonsteatotic liver into an obese Zucker rat initially has a positive effect on lipid metabolism. However, 3 months after OLT, the donor liver became steatotic with MIFC changes and reduced perfusion. The authors' results emphasize the importance of the recipient's metabolic status in the maintenance of liver graft function after OLT.


Subject(s)
Graft Survival/physiology , Liver Circulation/physiology , Liver Transplantation/mortality , Obesity/metabolism , Animals , Biopsy , Body Weight , Cholesterol/blood , Cholesterol, HDL/blood , Fatty Liver/pathology , Glycogen/metabolism , Male , Microcirculation , Obesity/pathology , Rats , Rats, Zucker , Triglycerides/blood
20.
Microcirculation ; 9(5): 363-75, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12375174

ABSTRACT

OBJECTIVES: The nonarterialized orthotopic rat liver transplant (NOLT) is a frequently used model in transplantation research that was recently used to investigate microcirculatory alterations during acute rejection, which occurs within 7 days. The present study sought to establish whether NOLT represents a reasonable model for the study of the hepatic microcirculation beyond the immediate reperfusion phase. METHODS: Three groups of animals were studied: sham-operated control (n = 8), NOLT (n = 7) and arterialized orthotopic liver transplant (AOLT; n = 8). The hepatic microcirculation was investigated by intravital fluorescence microscopy and laser Doppler flowmetry (LDF) on day 7 postoperatively. Liver histology and plasma levels of liver enzymes were also assessed. RESULTS: Plasma levels of aspartate aminotransferase, alanine aminotransferase, and bilirubin were significantly higher in NOLT than in AOLT and control animals. The low LDF signal recorded from the surface of the NOLT liver (92 +/- 25 vs. 210 +/- 25 and 172 +/- 14 PU in AOLT and control liver, respectively; p < 0.05) was associated with heterogeneous perfusion at both the lobular and sinusoidal levels (density of perfused sinusoids (n/40,000 microm(2)): 5.8 +/- 0.8, 8.1 +/- 0.3, 8.0 +/- 0.3, respectively; p < 0.05). The percentage of hyperfluorescent Ho342-stained hepatocytes (apoptotic) ranged between 2 and 5% and was not significantly different between groups. The lack of post-transplant arterial supply was associated with an increased hepatic cord width-to-sinusoid diameter ratio (3.77 +/- 0.3, 2.02 +/- 0.04, and 1.72 +/- 0.06 in NOLT, AOLT, and control animals, respectively; p < 0.001 vs. control and AOLT) and increased temporary leukocyte adherence to the walls of the terminal hepatic venules. Intense vitamin A autofluorescence around shunt- and large-diameter, slow-velocity vessels was occasionally encountered in the NOLT liver, which coincided with mild fibrosis and bile ductular proliferation. In the well-perfused areas, both AOLT and NOLT were associated with a significant rise in sinusoidal RBC(vel), which was more marked in the NOLT group. CONCLUSIONS: Our data indicate that NOLT represents an inappropriate model for the long-term study of the hepatic microcirculation. Lack of a post-transplant arterial supply may lead to persistent microvascular perfusion failure, hepatocellular/endothelial cell swelling, and microvascular anomalies related to bile duct injury. Recovery from microcirculatory alterations induced by cold preservation/reperfusion injury appears to depend on an intact hepatic arterial blood supply.


Subject(s)
Hepatic Artery/physiology , Liver Circulation/physiology , Liver Transplantation , Animals , Disease Models, Animal , Endothelium/pathology , Liver/blood supply , Liver/pathology , Male , Microcirculation/physiopathology , Perfusion , Rats , Rats, Inbred Lew , Reperfusion Injury/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...